
 IV&V Australia
The independent software testing specialists

Page 1 of 3

Developers and Testers – Who Should Do What?

By Rodney Parkin, IV&V Australia

Contact
details

IV&V Australia Pty Ltd
Suite 3A, 10-12 Clarke Street, Crows Nest, NSW, 2065
Phone +61 2 9957-6577
Email rodney.parkiin@ivvaust.com.au; URL http://www.ivvaust.com.au

Abstract

On many projects the division of testing responsibility between developers and independent testers is
not well understood. This can lead to gaps in test coverage, as well as strained relationships between
the two groups. In our consulting work, we find that this conflict is almost always caused by a lack of a
clear understanding of the respective roles and responsibilities of these two groups.

This paper discusses some of the causes of the conflict, presents a simple framework for defining the
different team roles, and provides some practical methods for defining “who should do what”.

Introduction

In many development organisations there seems to be

an almost inevitable conflict between the developers

and the independent testers.

We often see this conflict in our consulting work –

particularly in organisations with less mature

development processes. Typically we find that both

groups are diligently trying to “do their bit”, but see

the other group as letting them down.

We have come to recognise that the root cause of this

conflict is commonly a lack of understanding of the

test responsibilities of the two groups. This lack of

understanding can lead to a focus of effort that is not

only inefficient for both groups, but also encourages

unnecessary gaps and overlaps in test coverage.

Although there is no universally right test strategy –

this depends on the project and the available team –

we have identified a basic division of responsibility

which is simple to understand but surprisingly

effective. Even if you don’t plan anything else,

following this basic strategy as a starting point will

provide a significant improvement in test

effectiveness.

The Developer/Tester Conflict

Very commonly we hear testers say “I just can’t run

my tests – the software is not stable enough!” In

these cases, the testers spend most of their time after

software hand-over in identifying and documenting

basic robustness issues.

The testers may have invested a lot of time and effort

in planning and preparation, but they are not able to

get far enough through their test scripts to even

determine a pass/fail status. The software is just not

stable enough to support functional and system

testing. Much of the effort that they spent in

preparation is wasted, and they feel that they are

relegated to just “debugging” someone else’s

software.

When operating in this mode, the testers often feel

undermined by the developers, and personal conflicts

flourish.

At the same time, the developers also see a problem.

A common complaint is “the testers don’t have a

deep enough understanding of the implementation of

the system to test it properly”. To them, the problem

reports seem arbitrary and unsystematic, and they feel

that the testing does not exercise the “real” issues with

the software.

The developers know that testing is necessary, but

they see the testers as ineffective. This leaves the

developers feeling let down by them. They say that

the testers are not doing their jobs properly, and as a

result they are forced to spend time doing more

testing – “someone else’s job.”

The net result is that both teams feel they are not able

to do their own job properly. Even with the best

planning and preparation, testers spend most of their

time trying to make sense of system crashes and other

unpredictable failures – an activity they have neither

the skills nor interest to do well. This leaves them

less time to do their “own” testing. At the same time,

developers feel that they are spending their valuable

development time doing testing jobs which they

shouldn’t have to do.

We end up with a situation where both teams are

performing “test” activities which they are neither

interested in nor good at. The result is inadequate test

coverage and interpersonal conflict.

How to Get the Most out of Testing

There are a few simple rules which should be

considered when deciding on a basic test strategy.

These rules are:

mailto:rodney.parkiin@ivvaust.com.au;

 IV&V Australia
The independent software testing specialists

Page 2 of 3

 Assign the test tasks to the people with the most

aptitude for them;

 Order the test tasks for maximum efficiency; and

 Concentrate on the most effective test types.

As we explore each of these rules, you will see that

they all lead to similar conclusions about a basic test

strategy.

Assign the test types by aptitude

Not long after the requirements have been defined,

developers start to become more and more focussed

on implementation issues. They tend to use the

design documentation as their reference point for

implementation, rather then the requirement

documentation. As a result, their interpretation of the

requirements becomes influenced by the design

(which may have diverged from the requirements over

time).

By necessity, developers become very familiar with

the system design and implementation details

(because they are the implementors). Therefore, they

are most efficient at designing and performing tests

based on the design or code structure (ie white-box

tests). However, developers testing their own code

(and even developers testing each other’s code) are

likely to miss functional errors and omissions

(because they are likely to suffer exactly the same

oversights that cause these defects in the first place).

On the other hand, Testers traditionally focus is on the

system requirements. They are responsible for

ensuring that the developed product meets the user’s

needs. As such, they can become quite effective at

functional, black-box testing.

For testers to acquire the same knowledge of the

system implementation as the developers, they would

have to spend a considerable of time learning about

these issues as an additional task to their usual

responsibilities.

Based on this observation, it is more efficient for

developers to concentrate on structural (ie white-box)

tests and testers to concentrate on functional (ie black-

box) tests.

Order the testing for maximum efficiency

There is an old development maxim which goes

“Make it work, [then] Make it right, [then] Make it

fast”. This recognises the fact that it is ineffective to

worry about code optimisation until the code at least

performs the correct functions, and it is inefficient to

worry about detailed functional correctness if the

system is fundamentally unreliable.

This same principle can be applied to testing. The

earliest levels of testing should focus on “making the

system work” – that is, on identifying (and fixing)

reliability issues and thus ensuring basic robustness.

Only when these issues have been identified and

addressed should the focus shift to “making it right”

– that is, to detailed verification of functional

correctness.

Following this rule leads us to conclude that any

testing performed by the developers prior to handing

over the software to the testers should be primarily

focussed on establishing reliability. Testing for

functional correctness by the independent testers

should not start until after this has been done.

To be effective, the handover from developer to test

needs to be a controlled process with clear exit and

entry criteria. It is important that you do not define

successful completion of coding merely as the act of

handing software over to the independent testers. If

you do this, you can inadvertently reward the

developers for handing over unreliable/untested

software.

Concentrate on the most effective test types

An effective test strategy incorporates the use of a

variety of different types of testing. For example:

testing can occur at the unit, integration, system and

acceptance levels; test strategies can incorporate both

white-box and black-box techniques; and testing can

be done by developers or by independent testers.

Of all the possible test types, which ones give the best

return for resources expended? In the final analysis,

the answer comes down to which attributes of a

system most affect customer satisfaction. These are

typically Reliability and Functionality.

Our experience is that white-box/structural testing

done by developers at the unit and integration level is

most effective at finding Reliability issues and that

black-box/functional testing done by independent

testers at the system level is most effective at

identifying Functionality problems.

The conclusion from this rule is again that developers

should concentrate their testing on white-box testing

at the unit and integration level; and testers should

concentrate on black-box/functional testing at the

system level.

As a second priority, to further strengthen the test

strategy, other test types may need to be considered.

However our experience is that many of these tests

can be more effectively tackled by static review rather

than by dynamic test.

An Entry-Level Test Strategy

An effective entry-level test strategy should be

designed so that the testing activities provide the best

return on the effort expended. The strategy should

also provide clear guidance on who should do what

testing tasks during the development lifecycle.

At a basic level, the strategy does not have to be

extensive nor overly formal to be effective.

 IV&V Australia
The independent software testing specialists

Page 3 of 3

Reasonable efficiency and effectiveness can be

obtained by following a few simple rules with respect

to the Developer and Independent Test Strategies, an

associated Review Strategy, and by appropriately

managing Software Handover.

Developer Testing

As a priority activity, the developers should perform

unit and/or integration testing of their code prior to

handover to the test group. This testing should be

directed as follows:

1. The primary test objective should be to show

robustness at the unit and integration test levels.

That is, it should show that the system behaves in

a consistent and predictable manner irrespective

of all the special cases and exceptional conditions

which can arise at the code level. Verifying

functional requirements should be of lower

priority.

2. The testing should be structural and should focus

on special/extreme values and on exception

handling.

3. The test plan should aim to maximise code-based

metrics such as statement or decision coverage.

Independent Testing

Also as a priority activity, the independent testers

should perform functional and system testing after

handover. This testing should be directed as follows:

1. The primary test objective at the functional and

system test level should be to show conformance

to the system requirements.

The testers should be able to “assume” that the

system is reliable in its behaviour – ie that

whatever it does, it does consistently and

predictably.

2. The testing should be requirements based and

should focus on correct processing and display of

data.

3. The plan should aim for 100% requirements

coverage.

Supporting Reviews

As a second priority, additional support can be

provided to the test process by the use of reviews.

The following reviews provide significant value:

1. The system level tests should undergo peer

review. These reviews should include some

developers.

The developers participating in these reviews

should apply their “white-box” knowledge of the

system design and implementation to suggest

better ways of running tests and additional test

cases. In this way they can improve the system-

level testing without significantly compromising

its “independence”.

2. The system design and code should undergo peer

review. These reviews should include reviewers

who are familiar with the requirements without

being directly involved in the implementation.

These independent reviewers could potentially

come from the test group.

The independent reviewers should concentrate on

ensuring that the system requirements correctly

flow through into the design and subsequent

implementation.

Managing Software Handover

The project management must define completion of

“coding” in terms of the ability of the independent

testers to perform functional testing. This has two

implications:

1. The testers must be able to “reject” code if it is

inadequate for them to make meaningful

functional assessments. Rejection of the code

should not be seen as a failure by the testers.

2. Completion of code and unit test by the

developers must not be seen purely in terms of

software handover to test. If the software is

inadequate for the testers to start functional

testing, then they should be considered to have

not yet completed the code and unit test task.

The Conflict Resolved?

Although the rules described here are simple, they

provide a basic yet effective test strategy.

The strategy is effective because it focuses both

developers and testers on doing what they do best,

and targets the test types which give the most return

for the resources expended.

Traditionally testers complained that they didn’t get

software which was robust enough for them to

perform their planned and prepared tested. Using this

strategy, they can reasonably expect to get robust

software for test.

Developers traditionally complained that they were

doing the testers’ job. Using this strategy, they have a

defined responsibility for delivering robust code and

clear objectives for achieving this – a responsibility

which few developers will dispute.

The division of tasks between developers and testers

allocates test responsibility to the groups most skilled

in the relevant area. Developers concentrate on the

design and testers concentrate on the requirements.

Thus each group is spending time on the areas in

which they are most suited.

